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Abstract

Linear stability analysis has been carried out to predict the onset of double-diffusive convection in superposed fluid and
porous layers using a one-equation model. The eigenvalue problem is solved numerically by a finite difference scheme.
Results have been obtained for the thermal convection and salt-finger cases. Comparing with the results obtained for the
same problems by Chen and Chen [F. Chen, C.F. Chen, J. Heat Transfer 110 (1988) 403-409] using a two-equation model,
we find that these two methods give the same general characteristics of the marginal stability curves, however, there are
differences in the critical conditions and the flow streamlines at onset. Carefully conducted experiments are needed to
determine which model gives the more realistic results. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a binary alloy is directionally solidified by
cooling from below, a mushy layer consisting of a solid
matrix of dendritic crystals saturated with liquid melt is
sandwiched between a liquid layer above and a solid
layer below as show in Fig. 1(a). A typical temperature
(T) and concentration (C) distribution within liquid and
mushy layers is sketched in Fig. 1(b) for Pb-Sb (2.2
wt%) solidifying at a low rate (~um/s). Since Sb is much
lighter than Pb, the larger concentration of Sb on the
bottom means lower density there. The solutal concen-
tration distribution is destabilizing while the tempera-
ture distribution is stabilizing. Double-diffusive
convection is generated which eventually leads to plume
convection and chimney formation in the mushy zone
resulting in a defective casting, see for example, exper-
iments of Sample and Hellawell [1], Chen and Chen [2]
and Tait and Jaupart [3]. Linear stability and weakly
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non-linear analysis of the problem have been carried out
by Worster [4], Chen et al. [5], Anderson and Worster [6]
and Chung and Chen [7], among others. Such analyses
were made with a two-equation model of the fluid mo-
tion, i.e., one set of conservation equations each gov-
erning the fluid motion in the liquid and in the mushy
layers which are coupled by a set of suitable boundary
conditions at the interfacial region. A detailed summary
of the method of analysis and the results obtained are
given by Worster [8] in a recent review article.

In the same time period, a number of numerical
simulations of the directional solidification process have
been carried out using a one-equation model to describe
the fluid motion in both the liquid and the mushy layers.
See, for example, [9-13]. In this formulation, the po-
rosity ¢ (which assumes the value 0 in the solid,
0 < ¢ <1 within mush, and 1 in the liquid) is the
marker parameter which locates the point under con-
sideration into the correct region. In this manner, the
solidification problem becomes less complicated than
those based on the two-equation model, and at the same
time yields results which are reasonable as compared to
those obtained from experiments. Nandapurkar et al.
[14] used the one-equation model to consider the linear
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Nomenclature

a non-dimensional wave number, a = kd
by basic temperature gradient, d7/dz
bc basic concentration gradient, dCp/dz

C,Cy,Cy solutal concentration, sub ‘0’ indicates
reference, ‘B’ basic state

d thickness of domain, d = d| + d,

d, dy thickness of fluid and porous layers

d depth ratio = d)/d,

g gravity constant

k dimensional wave number

K permeability, a function of porosity ¢

Ky reference permeability

P pressure

R4, Rc thermal and solutal Rayleigh numbers

T,Ty,Tg temperature, sub ‘0’ indicates reference,
‘B’ basic state

t time

u,w velocity components in x and z directions

w normalized non-dimensional vertical
velocity

Greek symbols

or, o thermal and mass diffusivities

ot Ol thermal diffusivity of fluid and porous
layers

oct, ocp  mass diffusivity of fluid and porous layers

P, Pc thermal and solutal expansion coefficients

0 Darcy number = vK /A

¢ porosity

ér, €C OCTI/ OTp, 0€c1/ Ocp

P, Po density and reference density

vo kinematic viscosity

Subscripts

0 reference

L p liquid and porous layers

B basic state

T, C temperature and concentration

All-liquid zone

All-liquid zone

Mushy zone

Mushy zone

All-solid zone
(a) (b)

Fig. 1. (a) Three zones in directional solidification. (b) Tem-
perature and solutal concentration distributions when the
mushy zone has just fully developed (no all-solid zone at this
moment).

v

stability of a Pb—20 wt% Sn alloy under directional so-
lidification. Their results are obtained for a given
freezing speed and are in dimensional terms.

The question arises whether a stability analysis based
on the one-equation model will yield comparable results
as those obtained with the two-equation model. To an-
swer this question, we have performed linear stability
analysis using the one-equation model on the thermal-
solutal convection in superposed liquid and porous lay-
ers, and the results are compared to those of Chen and
Chen [15] who have performed linear stability analysis of
the same problem using the two-equation model. In the
present problem, no freezing or remelting is considered in
the porous layer. In the following, the equations are

derived in Section 2, the method of solution is presented
in Section 3, and the results and discussion are presented
in Section 4 followed by conclusions.

2. Equations

Consider a fluid layer of thickness ¢y overlaying a
porous layer of thickness d, with a total thickness
d = d, + d,,. The porosity of the porous layer is ¢ which
may be a function of vertical coordinate z. The density
of fluid is assumed to be linear in 7 and C:

p = po[l = pr(T — Ty) — Bc(C = Cy)],

where fir = —(1/p)(0p/0T) is the thermal expansion
coefficient and f. = —(1/p)(0p/0C) is the expansion
coefficient due to solute concentration.

The two-dimensional continuity, momentum, energy
and solutal concentration equations for a Boussinesq
substance valid for either the fluid or the porous layer
are [14]:

Ou Ow
ata = M
0 (u 0 (u 0 (u
o) ra(§) = (5)
)
,_pi;a_i’—;gf vV, )
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where ot = o, 0tc = o in the liquid layer and or = oy,
oc = ocp in the porous layer. Since no freezing or re-
melting is considered in the porous layer, there is no
latent heat term in Eq. (4).

The conditions at the top and bottom boundaries are
zero velocity with given values of 7 and C. The basic
state is quiescent and we seek the critical conditions
when fluid motion onsets.

The linearized perturbation equations are:

o' ow

— =0 6
>t (6)
o' ¢ oP v0¢ y )
o p, Ox KX VY @
ow - ¢ oP' V()d) 2.
o e KTV

+ ¢g(ﬁTT/ + ﬂCC,): ®)
orT’
E = O(TVZT/ — bTW/7 (9)
oC’ 2 bc , e d¢ oC’
B VO S Y (10)

where the prime denotes perturbation, and br = d73/dz
and bc = dCg/dz are temperature and concentration
gradients at the basic state. Normally bt is set to be
constant but bc may not be. When porosity is constant
in porous layer, bc is constant but may be different in
different layers.

Applying normal mode analysis, we assume

W/ _ W(Z) eil\;wrpr7
T/ _ T(Z) eil@rert7
C' = C(z) ™",
When these are substituted into Egs. (6)-(10) with the

elimination of the pressure and assuming steady onset
into steady convection (p = 0), we obtain

(D* — k)W — <l %)D(Dz — W

—czo, (11)

(DZ—kZ)T:ﬁW, (12)
or
(DM—%%D—I{Z)C—%W (13)

where D =d/dz (differential operator). When these
equations are non-dimensionalized with respect to
characteristic length d, velocity ar /d, AT = T, — T, and
AC = C, — Cy, where subscripts 2’ and ‘1’ denote the
top and bottom boundaries respectively, we finally ob-
tain the following linear stability equations:

Ky 2 Ky d¢
E(DLGZ) w— (¢ N

cafoy KoDszg(KO)DW

)D(D2 —a W

K7 Ky dz \ Ky
— @*R,T — &®RcC = 0, (14)
(D> — )T =21 . (15)

1dq§ 1 (bcd (oc
DP+——"D-|C==(-—|l—|W 16
(Prg@o-)e=g () (32w o
where the temperature and concentration Rayleigh
numbers are

B ATKd?  gBcACK

)
VodiTi Volicl

and the wave number a = kd. In these equations, K| is a
suitable non-dimensional constant to scale down the
equation because K is usually very small. The choice of
Ky is arbitrary. It can be K(¢ = 0.5), for instance.

The boundary conditions are

W=T=C=DW=0 atz=0and I.

3. Method of solution

For any given porosity distribution ¢(z) and corre-
sponding permeability K(z), the system of equations
(14)—(16) plus the boundary conditions is an eigenvalue
problem for a,R, and Rc. Our goal is to find the rela-
tionship between these three variables which makes the
problem have non-trivial solutions for W, T and C. The
method of solution is the following.

The fluid layer is divided into m sub-layers with
(m+ 1) nodes (from 0 to m), Fig. 2. Finite difference
method with second-order accurate discretizations is
used to transform the differential equations into a sys-
tem of difference equations, in matrix form, AX =0,
where 4 is a 3(m — 1) by 3(m — 1) matrix which contains
a,R,, Rc and

X = [VVI7TI7C17VV27T2>C27 """" 7Wm717Tmfl7Cmfl}T
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m+1

i+l

i1 T d

2
1
0
-1
Fig. 2. Discretization: uniform grid in z direction, » = d/m, d is

the thickness of the whole layer, 4 is the sub-layer thickness, m
is the number of sub-layers.

is the vector containing the values of W, T, and C in the
inner nodal points.

In order to have non-trivial solutions for X (i.e.,
W,T,C), the determinant of 4 must be zero, namely
det(4) = 0, which gives the following relation:

j"(a,]?a,}?c) = 0.

The procedure to solve f(a,R,, Rc) = 0 for critical a, R,

and Rc is the following.

(0) Set a value for Rc (or R,) depending on the problem
considered.

(1) Choose a starting value for a.

(2) For a sufficiently large range of R, (or Rc), search for
the smallest R, (or Rc) that makes det(4) = 0. This
gives a set of data [a, R,, Rc].

(3) Change a by a given step size. Repeat step (2).

(4) Repeat step (3) for a sufficiently large range of a until
a minimum R, (or R¢) is found (if there exists one).
This minimum is the critical Rayleigh number and
the corresponding a is the critical wave number.

(5) For this set of critical values [a, R,, Rc], calculate the
eigenvalues and eigenvectors of matrix 4. Extract the
velocity component () from the eigenvectors and
calculate the streamfunctions.

4. Results and discussion
4.1. Preliminary calculations

A set of preliminary calculations has been made to
validate the method of analysis and the numerical code.
For this purpose, we used the present method to obtain
the critical condition for the Rayleigh-Benard problem
by setting ¢ =1, Rc =0, 1/K = 0 and K, = 1. With the
number of nodes m =200, we obtain the critical
R, = 1706 and wave number a = 3.12 as compared to
the exact values R, = 1707 and a = 3.117 with an error

1720

1707.76 S —
1700 =

1680

1660 !

(-)Ra

1640 1—

1620

1600

1580 T T T T T T
0 50 100 150 200 250 300 350

m (number of sub-layers)

Fig. 3. Grid dependence test for Rayleigh-Benard problem.
(=) R, is the critical Rayleigh number at critical wave number
a = 3.117. The dashed line is the numerical result for different
grids. The solid line indicates the theoretical results.

of 0.1%. We also used the Rayleigh-Benard problem to
test the number of nodes needed to obtain accurate so-
lutions. The results as shown in Fig. 3 indicate very fast
convergence to the exact solution [16]. In all subsequent
calculations, m is set to 200.

To test the method for a porous layer we consider the
Rayleigh-Benard problem for such a layer with
¢ =039, Re=0, 1/K=1344x10° (any constant
> 10% and K, = K. The results are R, = 39.458 and
a = 3.14 which agrees well with the exact solution [17].

4.2. Onset of thermal convection in superposed fluid and
porous layers

Chen and Chen [15] have considered this problem
using a two-equation model. In order to compare with
their results, we set the following variables in terms of
the depth ratio d and the Darcy number & which is set to
be 0.003 (note the non-dimensional thickness of the
whole layer is unity):

5 N2
1 d 1:(1—ﬁ—d)7 Ko =K.

52
(17)

The marginal stability curves for different depth ratios
are presented in Fig. 4 in which the critical Rayleigh
number is shown as a function of the wave number a.
Similar to the results of Chen and Chen [15], we found
the marginal stability curve is bimodal at low depth
ratios. When the depth ratio is smaller than the critical,
the long-wave branch is the most critical, whereas when
the depth ratio is greater than the critical, the short-wave
branch is the most critical. In our case, we found the
critical depth ratio is approximately 0.095 while Chen
and Chen [15] found the critical value to be 0.13. The
reason for this discrepancy is the different nature of the

ol
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Fig. 4. Marginal stability curves for the thermal convection
case. The numbers denote depth ratios.

interfacial conditions imposed in the model equations
used. However, the essential bimodal characteristics of
the instability are captured by both solutions.

The variations of the critical wave number and the
Rayleigh number with the depth ratio are shown in Figs.
5(a) and (b), respectively, together with the results from
Fig. 2 in [15]. Since the definitions of the Rayleigh
number and wave number are different in the two
models, we have converted their data to conform to our
definitions. While Chen and Chen [15] used interface and
bottom temperatures and the thickness of the porous
layer in their definition of the Rayleigh number, it is
natural and convenient for a one-equation model to use

Wave number
N
o

0 0.2 0.4 0.6 0.8 1 1.2
(a) Depth ratio

top and bottom temperature and the thickness of the
whole layer. The conversions between the two models
are

&,-m(ﬂ)(l”) (18)
ér

and

a=a,(1+4d), (19)

where R,, and a,, were used in [15].

For the one-equation model, the critical wave num-
ber remains essentially constant at the value for a porous
layer up to the critical depth ratio of 0.095, Fig. 5(a),
then it increases approximately five-fold precipitously
when the short-wave mode became the critical instabil-
ity. As the depth ratio increases, the critical wave
number relaxes back almost to its initial value when the
depth ratio reaches 1. This trend agrees well with that of
Chen and Chen [15], but the values are 30-40% different
with the one-equation model giving smaller values. For
the critical Rayleigh number, Fig. 5(b), both the trend
and the value agree well for the two models. The Ray-
leigh number starts at 4n’/er (er = 0.7) when depth
ratio is zero and decreases with depth ratio continuously
until it approaches zero at a depth ratio of 0.5. Results
of both models show a change of slope at their respective
critical wave number, which is 0.095 for the one-equa-
tion model and 0.13 for Chen and Chen’s model [15].

In Fig. 6, we present the streamline patterns within
one wavelength of the instability flow at onset for depth
ratios 0.05-1.0. In these figures, the horizontal lines in-
dicate the liquid—porous interface. For depth ratios up
to 0.08, Fig. 6(a), the streamline patterns are essentially
the same as those for a porous layer. The effect of the
thin liquid layer above is quite minimal. But for d = 0.1
Fig. 6(b), exceeding the critical depth ratio, the con-
vection is confined mainly within the liquid layer with
some motion in the upper region of the porous layer. As

60
50

40 \
€ 30 \Q
ol
ol
0 ‘ ' .

0 0.2 04 0.6 0.8 1 1.2
(b) Depth ratio

Fig. 5. Critical wave number and Rayleigh number versus depth ratio for the thermal convection case. (a) Wave number, and (b)

Rayleigh number. Lines with dots are results converted from [15].
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Fig. 6. Streamline patterns at onset for the thermal convection case. The thick horizontal lines denote the liquid-porous interfaces.

Depth ratios: (a) 0.08; (b) 0.1; (c) 0.12; (d) 0.2; (e) 0.5; () 1.0.

the depth ratio increases, convection penetrates deeper
and deeper, Figs. 6(c)-(e), and the wavelengths of the
convection cells become larger. At d=1.0, Fig. 6(f),
fluid motion is found in the entire porous layer. When
these figures are compared with those of Chen and Chen
[15], the two-equation model presents a much stiffer in-
terface through which the motion in the fluid layer is
greatly damped.

For the thermal convection case, the one-equation
model captures the essential characteristics of the in-
stability as presented by the two-equation model.
However, there are differences in the critical values as
shown in Figs. 5(a) and (b). Chen and Chen [18] con-
ducted experiments with a water layer overlaying a po-
rous layer of glass beads in a tank with an aspect ratio
(length/width) of 2. Onset of convection was determined
by heat flux measurement. The convection pattern was

determined by visualization of the temperature distri-
bution on the top surface of the water layer using a
liquid crystal film. The experimentally determined criti-
cal Rayleigh numbers at six depth ratios, d = 0, 0.025,
0.1, 0.2, 0.5 and 1.0 agreed very well with the prediction
of Chen and Chen [15], see [18, Fig. 1]. Since the present
results of the critical Rayleigh number agree well with
those of [15] as shown in Fig. 5(b), we have confidence in
the one-equation model to predict such critical values.
We note here that heat flux measurements at supercrit-
ical Rayleigh numbers reported in [18] agreed well with
the non-linear computations carried out in [19].

The experiments of Chen and Chen [18] showed that
the convection pattern was three-dimensional. The av-
erage wave numbers of these convection plumes at the
same six depth ratios were compared to the prediction
of [15]. The agreement was good at depth ratios lower
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Fig. 7. Marginal stability curves for the salt-finger case. The
numbers besides the curves denote the depth ratios.

than the critical value. For depth ratio greater than the
critical, the experimental errors became very large and
the comparison was not as satisfactory. The present
results show that the one-equation model predicts lower
critical depth ratio and critical wave numbers than
those predicted by the two-equation model. It is pos-
sible then to determine which model is the more real-
istic one by carrying out careful experiments to measure
the wave number. In order to do this, the experiment
must be carried out at larger aspect ratios so that the
instability will be two-dimensional. Secondly, modern
techniques such as MRI or CT scan should be used to
determine more precisely the size of the convection
cells. And careful experiments should be carried out in
the depth ratio range of 0.095<&’<0.13 to determine

3.5
s )
225
2 —
o
= \/
2
1.5
0 02 04 06 08 1 12 14 16 18
(a) Depth ratio

the critical depth ratio. With these results at hand,
meaningful comparison can be make about these two
models.

4.3. Onset of salt-finger convection in superposed fluid and
porous layers

In order to compare our results with Chen and Chen
[15], the same parameter values are used:

R, =50, 6=0.003, er=0.7 & =375

As in the thermal convection case, we first show the
marginal stability curves for depth ratios from 0.05 to
1.6 in Fig. 7. Within the wave numbers considered up to
a = 14, no bimodal characteristics of the instability is
evident. Chen and Chen [15] did find bimodal behavior
at higher wave numbers but the short-wave branch never
became the critical one. When the depth ratio is in-
creased from 0.05 to 0.2, the critical solutal Rayleigh
number decreases as well as the critical wave number.
Beyond d = 0.2, the system becomes more stable as the
depth ratio is increased. This reversal was also found by
Chen and Chen [15], although it occurred at a smaller
depth ratio.

The variations of the critical wave number and sol-
utal Rayleigh number with depth ratio are presented in
Fig. 8. Both the critical wave number and the solutal
Rayleigh number decrease sharply at first, reaching their
respective minimum values, then increase gradually as
the depth ratio is increased from 0.3 to 1.6. The wave
number reaches its minimum at d = 0.3, whereas the
solutal Rayleigh number reaches its minimum at
d ~ 0.2. The behavior of these critical characteristics is
different from the results of Chen and Chen [15]. Their
results show that after attaining the minimum, both the
wave number and the Rayleigh number increase to
constant values as for d > 0.4.

The streamline patterns at onset of instability are
shown in Fig. 9 for increasing depth ratios from 0.05 to
1.2. At low depth ratios d < 0.3, convection mainly
occurs in the porous layer, Figs. 9(a) and (b). When

100

95

70

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
(b) Depth ratio

Fig. 8. Critical wave number and solutal Rayleigh number versus depth ratio for the salt-finger case.
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Fig. 9. Streamline patterns at the onset for the salt-finger case. The thick straight lines denote the liquid—porous interfaces. Depth

ratios: (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.6; (e) 0.8; (f) 1.2.

d=023, Fig. 9(c), convection is now confined within the
fluid layer. As the depth ratio is increased further, the
convection within the liquid layer becomes multi-cellu-
lar in the vertical direction. At d = 0.6, Fig. 9(d), there
are two cells in the vertical direction, which become
fully developed at d = 0.8, Fig. 9(¢). When d reached
1.2, there are three fully developed convection cells in
the liquid layer, Fig. 9(f). The vertical array of cells was
also obtained by Chen and Chen [15]. However, their
results show the instability of convective motion de-
creases sharply from the top to the lower cells whereas

in our results, the changes are more gradual. Also in
their results, the vertical array of convection cells ap-
pears at smaller depth ratios, for example, two-cell
pattern appeared at d = 0.4 in their case and at d = 0.6
in our case.

For the salt-finger case, as in the thermal convection
case, the general characteristics of the instability pre-
dicted by either the one-equation model or the two-
equation model are quite similar. The difference in the
critical values predicted by the two models is larger than
those found for the thermal convection case.
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Quantitative comparison between the two models for
the salt-finger case is quite difficult. While both models
used a same thermal Rayleigh number of 50 as one of
the computational conditions, however, because of the
conversion shown in Eq. (18), a constant R, will result in
different values of R,, or different values of d, although
R, and R,, are logical parameters to keep constant in
these two methods of calculation.

5. Conclusions

Stability analysis of double-diffusive convection in
superposed fluid and porous layers has been carried out
using a one-equation model. The results are compared
with those obtained by using a two-equation model by
Chen and Chen [15]. The major conclusions reached are:
1. For the thermal convection case, the bimodal nature

of the marginal stability curve at low depth ratios,
which was predicted by Chen and Chen [15], is also
predicted by the one-equation model. The actual crit-
ical depth ratio values as predicted by the two models
are slightly different.

2. The critical Rayleigh numbers for thermal convection
as calculated by the one-equation model agree quite
well with those predicted by the two-equation model
of Chen and Chen [15]. The critical wave numbers as
predicted by the one-equation model are lower than
those predicted by the two-equation model.

3. For the salt-finger convection case, the general char-
acteristics of the instability as predicted by the two
models are similar. The differences in the predicted
critical values are larger than those found in the ther-
mal convection case.

4. Stability analysis carried out using the one-equation
model is much less complicated than the two-equa-
tion model. The question which method yields the
‘correct’ values, i.e., critical Rayleigh number and
wave number for a given depth ratio can only be an-
swered by careful experimentation.

5. In all the above calculation cases, permeability is con-
stant, but the present model can handle cases with ar-
bitrarily distributed and anisotropical permeabilities
which are very difficult for two-equation models to
deal with.
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